

2016 IEEE PES GENERAL MEETING | July 17-21, 2016 PAVING THE WAY FOR GRID MODERNIZATION

Blocking Device Placement for Mitigating the Effects of Geomagnetically Induced Currents

Hao Zhu

Dept. of Electrical & Computer Engineering University of Illinois, Urbana-Champaign

Acknowledgements: National Science Foundation (NSF) Award EAR-1520864 ECE ILLINOIS

Geomagnetically Induced Currents (GICs)

 Solar storms disturb the Earth's magnetic field

 Change of magnetic field induces electric field (E-field)

 Geomagnetic induced currents (GICs) flow through the power lines

 Quasi-dc GICs disrupt power grid with excessive *reactive* power losses

ECE ILLINOIS

GIC Blocking Device Placement

- Blackouts due to voltage collapse and/or equipment failures (March 1989 in Quebec)
- Mitigation strategies: installation of GIC blocking devices
 - Capacitive circuits to block dc GIC flows, but may redistribute to other parts of system [Bolduc et al'05] [Arajarvi et al'11]

> placement is important!

ECE ILLINOIS

ILLINOIS

GIC Modeling

- Linear dc network analysis computes effective GIC: $\mathbf{I}^{GIC} = \mathbf{\Phi}\mathbf{V} = (\mathbf{\Phi}\mathbf{G}^{-1}\mathbf{H})\mathbf{E}$
- At each transformer $Q_t = K_t |I_t^{GIC}| \forall t$.
- Collectively, $\mathbf{Q} = |\mathbf{C}\mathbf{E}| = |\mathbf{K}\mathbf{\Phi}\mathbf{G}^{-1}\mathbf{H}\mathbf{E}|$ where the coefficient matrix $\mathbf{C} \coloneqq$
- K⊕G⁻¹H GIC blocking devices (GBDs) disconnect buses from substation, and thus change the network topology (effectively update matrices Φ and G)
- Given all blocked transformers with \mathcal{B} $GBDSCi(\mathcal{B}) = K(\Phi - \sum_{t \in \mathcal{B}} \Phi_t)(G - \sum_{t \in \mathcal{B}} G_t)^{-1}H$

Example: GBD modeling at a conventional transformer located in Substation *s*, with HV Bus *m* and LV Bus *n*

$$\mathbf{G} \leftarrow \mathbf{G} - g_{ms} \mathbf{e}_{ms} \mathbf{e}_{ms}^T - g_{ns} \mathbf{e}_{ns} \mathbf{e}_{ns}^T$$
 \mathbf{G}_t

ILLINOIS

ECE ILLINOIS

GBD Placement Problem

Two QLoss metrics robust to worst-case E-field scenario:
 i) the maximum QLoss among all transformers
 Q^{max}(B) := max max t max ||E||₂=1 |C_t(B)E| = max ||C_t(B)||₂

ii) the sum-squared (ss) QLoss over all transformers $\mathcal{Q}^{ss}(\mathcal{B}) := \sum_{t} \max_{\|\mathbf{E}\|_{2}=1} |\mathbf{C}_{t}(\mathcal{B})\mathbf{E}|_{2}^{2} = \|\mathbf{C}(\mathcal{B})\|_{F}^{2}$

• Given the number of GBDs N_B , the placement problem formulated as

 $\begin{array}{ll} \min & \mathcal{Q}(\mathcal{B}) \\ \text{s. t. } & |\mathcal{B}| \leq N_B \end{array} \tag{GBD}$

with either QLoss metric as the minimization objective ECE ILLINOIS

Linear Sensitivity Analysis

ECE ILLINOIS

- Local GIC blocking effects have been observed
 - Blocked GICs redistributed to other transformers at the same substation
- Linear sensitivity analysis for a 20-bus HV GIC case Substation 3 [Horton 300 MW 900 MW 150 Myan -74 Myar Substation 5 900 MW -74 Mvar 600 MW 18 Mya Substation 4 777 MW Substation 8 T10 Substation 200 Mva 550.0 Mvar 500 MW 500 MW -7 Mvar -7 Myar

Sensitivity Factor Results

TABLE I TBDF COEFFICIENTS AT TRANSFORMER au for blocking transformer t

τ t	T1	T2	Т3	T6	T8	T 10	T14	T15
T1	\sim	-0.0015	0.2159	0.0478	0.1095	0.0043	-0.0216	0.0574
T5	0.0027	0.0009	0.0028	0.0081	0.0052	0.0007	0.0011	0.6567
T12	0.0014	0.2445	0.0002	0.0004	0.0009	0.0000	0.2253	0.0004
T13 (HV)	-0.0017	0.2683	0.0001	0.0011	0.0025	0.0001	0.3077	0.0012

TABLE II TBDF COEFFICIENTS AT TRANSFORMER au for blocking transformer t with T5 blocked

τ	T1	T2	Т3	T6	Т8	T 10	T14	T15
T5	0.0027	0.0009	0.0028	0.0081	0.0052	0.0007	0.0011	0.6567
T15 (with T5 blocked)	0.0647	0.0206	0.0678	0.1931	0.1251	0.0176	0.0257	2
T12	0.0014	0.2445	0.0002	0.0004	0.0009	0.0000	0.2253	0.0004
T12 (with T5 blocked)	0.0014	0.2445	0.0002	0.0004	0.0009	0.0000	0.2253	0.0007

Substation Blocking Problem

Using the sensitivity based approximation, problem
 (GBD) becomesinin Q^{max}

S.t.
$$\left\| \mathbf{C}_{t} + \sum_{s} x_{s} \tilde{\mathbf{C}}_{s,t} \right\|_{2}^{2} \leq Q^{\max}, \quad \forall t$$
 (max-Q)
 $x_{s} \in \{0, 1\}, \text{ and } \sum_{s} w_{s} x_{s} \leq N_{B}$

$$\min_{\{x_s\}} \left\| \mathbf{C} + \sum_s x_s \tilde{\mathbf{C}}_s \right\|_F^2$$
s.t. $x_s \in \{0, 1\}$, and $\sum_s w_s x_s \le N_B$

$$(ss-Q)$$

 To solve this mixed-integer program, we develop an efficient semidefinite relaxation based solver to relax the binary constraint

Qmax Minimization

- For < 8 GBDs, the SDR approach is very competitive to the benchmark exhaustive search (ES) method
- The approx. cost attained by SDR approaching the actual cost

GIC Redistribution Effects

 Blocking more substations does not decrease Qloss uniformly at every transformer

ECE ILLINOIS

IILLINOIS

Conclusions

- GIC hazard mitigation crucial for power grid reliability and stability
- and stability
 GIC blocking device placement to block power network GIC flow
 - Semidefinite relaxation (SDR) to tackle the binary selection
- Numerical^ttests show the effectiveness of the SDR-based approach
- Future research directions
 - Test the proposed methods on large real cases at high-latitude regions
 - Investigate the GBD effects to neighboring areas

11

– Extend to other GIC operational mitigation strategies